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Let R = C[—1, 1] denote a certain class of rational functions. For each f€ R,
consider the polynomial of degree at most n that best approximates / in the uniform
norm. The corresponding strong unicity constant is denoted by M, (f). Then there
exist positive constants ¢ and f, not depending on n, such that an < M () < fn,
n=12,...

1. INTRODUCTION

Let C(I) denote the space of real valued, continuous functions on the
interval = [—1, 1], and let [T, = C(I) be the space of real polynomials of
degree at most n. Denote the uniform norm on C(I) by ||-||. For each
S € C(I) with best approximation B,(f) from II,, there is a smallest constant
M, (f) > 0 such that for any p& 17, ,

P = BN <M LNNS=pll = Lf = B, (A (1.1)

Inequality (1.1) is the well-known strong unicity theorem {3}, and hereafter
M, (f) is defined to be the strong unicity constant.
The behavior of the sequence

M (o (1.2)

* Part of the research for this paper was done -as a visiting professor at Old Dominion
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has been the subject of several recent papers. (In addition to the references of
the current paper, the interested reader is referred to a recent survey paper by
Bartelt and Schmidt [1] and to the bibliographies of [5, 7].) In [5], Henry
and Huff introduced the terminology “precise order of M ,(f).” Definition 1
below is a modification of the definition appearing in [5].

DerINITION 1. Let f€ C(I), and suppose there exist positive constants a
and f, a natural number ¥, and a positive real valued function ¢ with domain
the natural numbers satisfying

ac(n) < M (f) < fe(n), for all n > N. (1.3)

Then M, (f) is said to be of precise order c(n).
For certain functions '€ C(I), the authors [7], in collaboration with S. E.
Weinstein, have shown that

an < M, (f) < pr’. (1.4)

Although an entire class of non-polynomial functions that satisfy (1.4) is
given in |7], to date the only non-polynomial function for which the precise
order of M,(f) has been established [5]is f(x)=1/(x—4),A>2, xE L

The goal of the present paper is to establish the precise order of M, (f) for
every f€ R, where R is a certain class of rational functions [9].

2. PRELIMINARIES

For f€ C(I), e,(f)(x) =/(x) — B,(f)(x). Let
E(f)={x € I |e,(f)x) = e, (NI} 2.1)

be the set of extreme points of the error curve e,(f). Suppose that
B = {Xgy Xy yers Xp 11} S EL(f) is an alternate [3, p. 75] for e, (f). Define
9,€1,,i=0,.,n+1, by

qin(xj) =sgn en(f)(xj)’

2.2)
J=0sn+1, j#i i=0.,n+1

If E,(f) consists of precisely n + 2 points x, < x, < --- < X,,,, then Henry
and Roulier [6], utilizing the work of Cline [4] have shown that

M, (f)=_ max {lg,ll} (2.3)

ogjgn+1
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Hereafter let

Ya(x) =sgne,(f)x), x€L (24)

The following theorem is fundamental to the subsequent analysis.

THEOREM 1 (Schmidt [10]). Let g &€ II, satisfy y,(x)q(x)< 1 for all
XEE(f)and |q|=M,(f). Let A ={x EE,(f): v,(x) g(x) = 1}, and select
x*€I such that |q(x*)=|q|. Then there exist n+1 points
Vo <y, < e+ <y, in A such that either

(i) x* <y, and —sgn q(x*), y,(¥o)> Va(P1)swwrr ¥(¥,) alternate in sign;
or

(i) x* >y, and 7,(¥o)s V(Y1 )seees Yo ¥u)» —SBN q(x*) alternate in sign;
or

(i) y;_, <x*<y;, for some i=1,..,n and y,(¥o)es Va(Vii1)h
—8g0 q(x*), V,(¥)seres V() alternate in sign.

The class of rational functions for which precise orders of strong unicity
constants will be established is now described. These ratonal functions are
extensively analyzed by Rivlin |9].

Let a and b be non-negative integers with a > 0. If |¢| < 1, define
fEC[~1,1] by

)= S 0T0) @5)

where T, is the kth degree Chebyshev polynomial. Then Rivlin [9] shows
that

_ T (xX) =T, _ ()
SO = T

(2.6)

Let R < C[—1, 1] be the set of all rational functions defined by (2.5) and
(2.6). If @ and B are real numbers, define R by

R={eC[-,1]:h=a +B,fER}. .7

Section 3 is devoted to showing that if u € R, then M,(u) is of precise
order n. Since M, (af + ) =M, (f), it will be sufficient to show that M, (f)
is of precise order n for every f€ R.

Rivlin [9] establishes for f€ R that

k+2

K
t
Buiio()X) = 2 T p(x) + -7 Tasslx), x€I
=0
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and that B, ,(f)=B(f) for j=ak+b,..,alk+1)+b—1  Let
n,=ak+b, k=0, 1,.... Then

B, (f)=B(f) for j=ng,n,+ 1,n,,—1L (2.8)
Furthermore, with x = cos 6,

tk+l A(B)

ej(f)(x)':l___t'fB—(e_)a j=nk9nk+ l,'--a e — 1’ (29)
where
A(6)
N .1
50) cos[n, 8+ ¢], (2.10)
and where
_ 2 42 :
cos ¢ = 2t+(1+t)cosa0, sin (1 —¢*)sinaf @.11)

1+ > —2tcos af T 1+ —2tcosab

In [9] it is noted that A(6)/B(f)= +1 alternately at n,,,+ 1 points on
[0, 7], which by (2.9) is precisely what is needed to insure (2.8).
It should be noted that (2.9) implies

E,(f)=E,.(f)=-=E, () (2.12)

Thus for E,(f), j=n, n,+ l,..,n ., — 2, the cardinality |E;(f)| of E;(f)
exceeds j + 2. However, for j=n,, ,— 1, k=0, 1...,,

|Epp,,— 1O =nn + L. (2.13)

For a=1, =0, and proper choices of a, #, and ¢, f(x)=1/(x —4) is
included in R. However, in the context of the present paper, a > 0 and b may
be any non-negative integers, and consequently |E,(f)l may exceed j+ 2
infinitely often. The analysis given in [5] depended on |E;(f) =j+ 2 for
Jj=0, 1,... Thus the arguments below are necessarily more complex than
those of [5].

3. PRECISE ORDERS FOR CERTAIN RATIONAL FUNCTIONS

In this section the principle result of the present paper is established: for
every f€ R, M, (f) is of precise order n. The proof of this assertion will be
accomplished through a series of lemmas, culminating in Theorems 2 and 3.
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LEmMA 1. For fER, the extreme points of E/f) consist of —1, +1, and
the n,, ,— 1 roots of

g(x)=aT, ()2 + (1 + ) T,(x)] + n, T, (x)(1 = 1*) Ty(x),
J=n,n+ Lo, ,— 1L (3.1)
Proof. Equation (2.10) and the remarks below (2.11) imply that there

exist n, ., + 1 values n, 0, + ¢, such that A(6,)/B(6,) alternates between —1
and +1 for i =0,..., n, . Thus

sin(n, 8, + ¢;)=0, i=0p My ys (3.2)
but
sin(n, @ + ¢) =sin n, 6 cos ¢ + cos n, 0 sin ¢.
Substituting (2.11) into this equation and utilizing 7',(x) = cos {6, x = cos 6,
yields
sin(n, 0 + ¢) = sin 6/[n,a(l + £ — 2t cos ab)]
X {aT, ()2t + (1 + 17) T, (x))
+m T, (x)(1 = £2) Ty(x)}. (3.3)

Since |£] < 1, Eqgs. (3.2) and (3.3) imply the conclusion. [

LemMma 2. For fER,
e, ()Yl e (L + £ — 2T, (x)]
=T, (0)[=2t + (1 + ) T,(x)] = [(1 — x*)/mea] T, (x) To(x)(1 — 1),
J=none+ Laayn,,, — 1 (3.4)

Progf. Equations (2.9) and (2.10) imply that

e ()x)/llef N =cos(m+6),  j=n,m+ Leyng,— 1L

Equation (3.4) is obtained by utilizing (2.11), x =cos 8, T\(x) = cos /6, and
algebraic manipulation. [

Define Q,,,, by
Qm+ l(x) = Tn,((x)[_ZI + (1 + tz) Ta(x)]
— (1 =x*)/na] T, () To(xX(1 — £, (3.5)
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where m =n,,,— 1. Equality (2.13) implies that |E,(f)|=m +2. From
Lemma 1, —1, +1, and the zeros of (3.1) constitute the elements of E,(f);
label these as

—1=x,<x, < <x, =1L (3.6)

Mepy
For each k=0, 1,...,m + 1, define Q,,, , €1l ., by

Qm+ l(xk) = ym(xk)’ (37)

where p,, is given by (2.4). Let g,,¢l1,, be determined by

qim(xk) = ym(xk)’ k= 05---’ m+ 15 k * i (38)

Since |E,,(f)| = m + 2, (2.3) implies that

M, ()= max gl (3.9)

0gi<m+1

Thus initially || g, { = 0,..., m + 1, is estimated.

Lemma 3. Suppose that Q,,,, and q;,, i=0,..,m+ 1, are defined by
(3.7) and (3.8), respectively. Let a,,,, be the coefficient of x"*' in Q,,. .
Then

By (X7 = 1) g(x)
am—a+1)2"(x—x;)’

qim(x) = Qm+ l(x) -

i=0,.,m+1l,m=n,_,— L (3.10)

Proof. Equations (3.7) and (3.8) imply that

Gim(X) = Qg1 (X) — @y kﬂ (X — X)) (3.11)
=0
k#i
From Lemma 1,
we) =11 =)
(x> — 1) g(x)

“am—a+ 12" (3-12)

Equations (3.11) and (3.12) now imply the conclusion. 1
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LEMMA 4. Let g be the polynomial given in (3.1). Then
(@) |l gll is of precise order (m —a + 1)*, and

(b) max_, ., |(d/dx)[(x* — 1) g(x)] is or precise order (m —a + 1)*.

Progf. For part (a), (3.1) implies that
gl <allT,l,
where a is some positive constant not depending on n,. Therefore
lell <ami=a(m—a+1).
On the other hand, (3.1) yields
lell > &)

=ani(t — 1)’ + n,a*(1 — %)

=(m—a+ D¥a(t— 1)’ +a*(1 — ))/n,).
Since [¢| < 1, this inequality establishes that

gl >pim—a+1).

Thus (a) is proven.
To prove part (b), first let r(x) = (x* — 1) g(x). Then

r(x)=2xg(x) + (x> — 1) g'(x).
But from (3.1),

(* = 1) g'(x)=a(x’ — 1) T, (x)[ -2t + (1 + %) T,(x)]
+a(x* — 1) T, (x)(1 +£°) Tj(x)
+mx = 1) T, ()1 —1°) Ty(x)
+m (x> = 1) T, (x)(1 — %) T} (x).

Now
(1 = x%) Ty (x) = xT}, (x) — m; T, (%)
and
(1 =x?) T, (x) = [T, (%) — xT,, (x)].
These last two equalities and (3.14) imply that

max [ = 1)g'(x) = O[(m—a+ 1]

(3.13)

(3.14)

(3.15)
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Use of (3.13), (3.15), and part (a) implies that
_max |(d/dx)[(x* — 1) g(x)]| = Ol(m —a + 1)’}. (3.16)

To conclude the proof of part (b) let x =x;, where x,6E,, is any extreme
point of e,,(f) exceptl or —1. Now (3.3) implies that

n,asin 8(1 + 1> — 2t cos af) sin(n, 8 + ¢) = (1 — x*) g(x).  (3.17)

Differentiating (3.17) with respect to x, evaluating at x = x;, and utilizing
(3.2) yields

an,(1 + > — 2t cos ab,;) cos(n, 0, + ¢,)(n, + d¢/db)|,_,.
= (d/dx)[ (" — 1) g(x)] |5, (3.18)

Therefore (2.11), (3.18), and the remarks above (3.2) imply that
any(1 + 12 — 2t cos afl)) + a’n, (1 — %) = [(d/dx)[(x* — 1) g(x)]

lx=x

Thus
[(d/dx)[(x* — 1) g(0))lsx, > ani(1 — 1)* + @’ny(1 = 1)
=am—a+ 1) (1 —t)+a’im—a+ 1)(1-1). (3.19)

Inequality (3.19) and (3.16) are equivalent to conclusion (b).

LEMMA 5. Let a,,,, be the coefficient of x"*'in Q,, .. Then
27 (L) @y | <27/ = [2]) (3.20)
Proof. By (3.7),

m+1

Omei)= 3 7a(x)

w(x)

G X)W (3.21)

where w is defined in (3.12). Since y,(x,) is alternately +1, k=0,..,m + 1,

m+1

(@] = 20 /1w’ (x)]- (3.22)

Let g, , be the coefficient of x™*! in the Q@,,,, defined in (3.5). Comparing
(3.4) with (3.5) yields

O 1) = 7)1 + £ = AT (x)],  k=0pym+ 1.
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Therefore

m+1

Qm+1(x) = Z yn(xi)[l + tz - 2tTa(xi)]

w(x)
(x=x)w'(x;)
This equality implies that

m+1
1am+1‘ - Z (1 +[ —-uT (xl))/' /( )| (323)
Equations (3.22) and (3.23) now imply that
min (1 + £ = 2T, (%) |@p.,| <| Gy
<max (1472 — AT, (x ) |G 41

from which it follows that

(U=t (@i 1| |Gl S +TED @y - (3.24)
But (3.5) implies

] = 2770 = 2"

This equality and (3.24) now imply (3.20). @

Lemma 1-5 now facilitate the proofs of Theorem 2 and 3 below.

THEOREM 2. Let f€ R, where a > 0 and b are non-negative integers. Let
ny=ak+b, k=0, 1,... Then M, _,(f)is of precise order n;,, — 1.

Progf. According to Definition 1 it is sufficient to show that there are
positive constants a and § independent of k¥ and a natural number K such
that

a(,,— 1) <Mnk+l—1(f) <P, — 1),

for all k> K. Since |E(f)|=m+2, m=n,, ,—1, (3.9) is valid. Lemma 3
implies that

|G i1 max I(x* — 1) g(x)|
aim—a+1)2™ -i<x<1 Ix —x;]

i=0,m+ 1. (3.25)

”qim” < ”Qm+1” +
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From (3.21)
w(x)
10 IS el max, - max |55,
and consequently (3.11) and (3.25) imply that
2{ay,,] |(x? — 1) g(x))
< m — =, (326
19 am—a+1)2™ ocioms . —ienci | x — x;] (3:28)

Applications of Lemma 4 and Lemma 5 to (3.26) now establish that
i)l =0O(m—a+ 1), i=0,.,m+ L (3.27)
On the other hand, from Lemma 3 and (3.6),

am+] g(l)

qm+1.m(1):Qm+l(l)_ a(m_a+ l)2m—l -

Therefore

2| g() _
a(l+t))m—a+1)

|Gt 1.m(1D] 2> 1, (3.28)

but (3.1) implies that
gy=am—a+ 1)1 -+ (m—a+ 1)a*(1 —£2).
This result and (3.28) now establish that
1Gm1,mll > B*(m—a+ 1) (3.29)

Inequality (3.29), equality (3.27), and (3.9) now imply the conclusion of
Theorem 2. §}

THEOREM 3. Let fER, where a >0 and b are non-negative integers.
Then M, (f) is of precise order n.

Progf. Theorem 1 states that M, (f) has precise order m, where
m=n, ,— 1. Because of (2.12),

M, (I<M, . < <M (f) (3.30)
Also

Mewr—me=a, k=0, 1. (3.31)
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The inequalities in (3.30), equality (3.31), and Theorem 1 imply that
M, (H=0om+j, j=0,,a—1 (3.32)

Appealing again to (3.30) and (3.31), and also to (3.32), Theorem 3 will
be established if there exists an a > 0 not depending on k and a natural
number K such that

an <M, ()  k>K (3.33)

Theorem 1 insures the existence of a g, € IT, such that
1gnll =M, (/). (3.34)

In what follows ||g,, || is estimated for cases (i) and (iii) of Theorem 1. The
analysis for case (ii) of Theorem 1 parallels that about to be given for case
(i) and hence is omitted. Let x* €1 be such that [g, (x*)|=|lg,,| Define

ACE,(f)by
A={x€E,(f) (%) g, (x)=1}.

Case (). In this case Theorem 1 guarantees that there exist n, + 1
points

Yo <Py <eoe <Yy,

contained in 4 such that x* <y, and —sgn g, (x*), ¥, (¥o)s Y, (¥ 1 )srees Y, (V)
alternate in sign. Let

B={ypsusVn} EASE, = {Xo5, X, }

Now (2.12) and (3.31) insure that there are precisely a elements of
E,(f)—B. Let

{Zos Zysees Zg_ 1} =Enk(f)—B.
For Case (i), zo=—1 € E, (f) —B. Definep€ 11, ,, by

POY) =4, ()= (Vi) 1=0uiny,

(3.35)
p(—1) = —sgn g, (x*).
Thus p has n, + 2 sign changes. If b, ., is the coefficient of x"**! in p, then
the argument given in [7] implies that

1By s ] > 2% (3.36)
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Also,

ng

an(x) =px)— bnk+l 1:10 x—=y))-

Therefore from (3.35)
ni
@ (1) =p(=1) = b, . [T (1 -»)
j=0

}n=+1l (—=1- xj)

= _Vnk(yo) - bnk+]

jq:_ll (-1 _zj) .
Thus
l_["":+ll 1+ x
190 (DI 2 by o | Hemr— — 3.37
N )| | xt1 Hj:]1|1+zj1 ( )
Applying (3.12) and (3.36) to (3.37) results in
| g(—1)|

19, (= 1) > ———— -1
J T an 2°7 P TI)  + 2

Since [ [/] |1+ z;/ <27, it follows that

S lg(=1)|

— 1.
= ank22a—3

1g,, (=1l

Equation (3.1) now implies that

|, (=D 21" (1 = 0)* + a(1 - ) — 1.
This inequality and (3.34) imply for Case (i) that (3.33) is satisfied.

Case (iii). Verifying (3.33) for this case is slightly more complex. Let
B ={Ygses Vi_tsVisws Vn,} SA be the extreme points guaranteed by
Theorem 1, where now y, ,<x*<y, for some i=l,.,n,. Since
YadVie) = Va (i) and E, (f) = E,(f), there exists a v € E, (f) such that
Yio1 <v<y;and y, (v) = —y,(y;) For Case (iii), definep € I, ., by

PY)=q, (y) =y, (¥  i=0un,
p()=7,(v)

640/32/4-4
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Again p has n + 2 sign changes and hence (3.36) is valid for this p. Now
Theorem 1 and the definition of p imply that

4, (X) =p(x) b, ., H (x— ). (3.38)

As in Case (i), if B={yg,..»,}, then BCACE, = {x¢,.... X, }. and
E, (f)— B contains precisely a elements {z,,..., z, ,}. Therefore (3.38) may
be expressed as
n Hm+l (X )
0 (X) = P(X) — =524~ ’ -
I_L OZ;tL j)(x'_v)

Again by utilizing (3.12) this expression can be written as

nk+1(x2— 1) g(x)
an, 2" j 02=t1 (x — z)(x—v)'

gy (%) = p(x) — (3.39)

Evaluating (3.39) at x = v and using (3.36) yields

|(d/dx)[((x* — 1) 8(x))/(x = 0)lx=e
an,2%” ll—I 0 Z#e lv—z)

Since for Case (iii), v#+1l, (3.19), and the observation that
H] 0, z;tu _zj|<2a_] imply that

- L

g, ()] >

n(1 =17 +a(l —1)
19, 0)| > =5

— L

Hence (3.33) is valid for Case (iii) also, concluding the proof of Theorem 3.

Theorem 3 provides for the precise order of M,(f) for every f€ R. Other
efforts [5, 7] to establish the precise order of M, (f) for specific functions f
have relied on |E,(f)| = n + 2 for every n. Theorem 1 allows this restriction
to be circumvented for rational functions in R.

For certain non-rational functions (1.4) provides bounds for M,(f), but
precise orders for these functions have yet to be displayed.

The authors believe that the precise order concept merits further study,
particularly in light of the relationships between strong unicity and Lebesgue
constants {7, 8].
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