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Let R ~ C[-I, II denote a certain class of rational functions. For each JE R,
consider the polynomial of degree at most n that best approximatesJin the uniform
norm. The corresponding strong unicity constant is denoted by Mn(J). Then there
exist positive constants a and fl, not depending on n, such that an':;; Mn(J)':;; fln,
n= 1,2,....

1. INTRODUCTION

Let C(l) denote the space of real valued, continuous functions on the
interval 1= [-I, 1], and let lIn ~ C(l) be the space of real polynomials of
degree at most n. Denote the uniform norm on C(l) by ",11. For each
IE C(l) with best approximation Bn(f) from lIn' there is a smallest constant
M n(f) > 0 such that for any p E IIn'

(Ll)

Inequality (1.1) is the well-known strong unicity theorem [3], and hereafter
M n(f) is defined to be the strong unicity constant.

The behavior of the sequence

* Part of the research for this paper was done ·as a visiting professor at Old Dominion
University, August 1979-July 1980.
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has been the subject of several recent papers. (In addition to the references of
the current paper, the interested reader is referred to a recent survey paper by
Bartelt and Schmidt [1] and to the bibliographies of [5, 7].) In [5], Henry
and Huff introducl'd the terminology "precise order of Mif)." Definition I
below is a modification of the definition appearing in [5].

DEFINITION 1. Let fE C(I), and suppose there exist positive constants a
and fl, a natural number N, and a positive real valued function c with domain
the natural numbers satisfying

ac(n) <,Mn(f) <'flc(n), for all n ~ N. (1.3 )

Then Mn(f) is said to be of precise order c(n).
For certain functionsfE C(I), the authors [7], in collaboration with S. E.

Weinstein, have shown that

(1.4)

Although an entire class of non-polynomial functions that satisfy (1.4) is
given in [7], to date the only non-polynomial function for which the precise
order of Mn(f) has been established [5] isf(x) = Ij(x - A), A~ 2, x E I.

The goal of the present paper is to establish the precise order of Mn(f) for
every fE tt, where tt is a certain class of rational functions [9].

2. PRELIMINARIES

For fE C(I), en(f)(x) = f(x) - Bn(f)(x). Let

En(f) = {x E I: Ieif)(x)1 = Ilen(f)111 (2.1 )

be the set of extreme points of the error curve eif). Suppose that
d= {xo' x"..., x n+.} r::;;.Eif) is an alternate [3, p. 75] for en(f). Define
qinEIln' i=O,... ,n+ I, by

qin(X) = sgn en(f)(xj ),

j = 0,..., n + I, j =1= i; i = 0,... , n + 1.
(2.2)

If En(f) consists of precisely n + 2 points Xo < Xl < ... < x n+ l' then Henry
and Roulier [6], utilizing the work of Cline [4] have shown that

(2.3 )
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Hereafter let
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xEI. (2.4 )

The following theorem is fundamental to the subsequent analysis.

THEOREM 1 (Schmidt [10 D. Let q E IIn satisfy Yn(x) q(x) ~ 1 for all
x E En(f) and Ilqll = Mil). Let A = {x E En(f): Yn(x) q(x) = I}, and select
x* E I such that Iq(x*)1 = Ilqll. Then there exist n + 1 points
Yo <Yl < ... <Yn in A such that either

(i) x* <Yo and -sgn q(x*), Yn(Yo), Yn(Yl)'"'' Yn(Yn) alternate in sign;
or

(ii) x* >Yn and Yn(Yo), Yn(Yl)'"'' Yn(Yn)' -sgn q(x*) alternate in sign;
or

(iii) Yi-l <x* <Yi for some i = 1,..., n, and Yn(Yo),"" Yn(Yi-l)'
-sgn q(x*), Yn(Y;), ... , Yn(Yn) alternate in sign.

The class of rational functions for which precise orders of strong unicity
constants will be established is now described. These ratonal functions are
extensively analyzed by Rivlin [9].

Let a and b be non-negative integers with a > O. If 1 tl < 1, define
fE C[-I, 1] by

00

f(x) = L fTaj+b(x),
j=O

(2.5)

where Tk is the kth degree Chebyshev polynomial. Then Rivlin [9] shows
that

(2.6)

Let R ~ C[-I, 1] be the set of all rational functions defined by (2.5) and
(2.6). If a and /3 are real numbers, define A. by

A. = {E C[-I, 1]: h = af +/3,fE R}. (2.7)

Section 3 is devoted to showing that if u E A., then Miu) is of precise
order n. Since Mn(af+ /3) = Mn(f), it will be sufficient to show that Mn(f)
is of precise order n for every fER.

Rivlin [9] establishes for fE R that
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and that Bak+b(f) =B/f) for j= ak + b,..., a(k + 1) + b - 1. Let
nk = ak + b, k = 0, 1,.... Then

Furthermore, with x = cos 0,

tk + 1 A (0)
e/f)(x) = 1 _ t 2 B(O) ,

where

j = nk, nk+ 1,... , nk+1 - 1, (2.9)

and where

(2.10)

Ii. - 2t + (1 + t2
) cos aO

cos 'I' = ,
1 + t2

- 2t cos aO

(1 - t 2
) sin aO

sin ~ = I + t2 _ 2t cos aO . (2.11)

In [9) it is noted that A(O)/B(O) = ±1 alternately at nk + l + 1 points on
[0, n), which by (2.9) is precisely what is needed to insure (2.8).

It should be noted that (2.9) implies

(2.12)

Thus for E/f), j = nk, nk + I,... , nk+1- 2, the cardinality IEj(f)1 of E/f)
exceeds j + 2. However, for j = nk +1- 1, k = 0, 1,...,

(2.13)

For a = I, b = 0, and proper choices of a, {3, and t, f(x) = 1/(x - A.) is
included in R. However, in the context of the present paper, a >°and b may
be any non-negative integers, and consequently IE/f)1 may exceed j + 2
infinitely often. The analysis given in [5) depended on IE/f)1 = j + 2 for
j = 0, I,.... Thus the arguments below are necessarily more complex than
those of [5).

3. PRECISE ORDERS FOR CERTAIN RATIONAL FUNCTIONS

In this section the principle result of the present paper is established: for
every fE R, Mn(f) is of precise order n. The proof of this assertion will be
accomplished through a series of lemmas, culminating in Theorems 2 and 3.



296 HENRY AND SWETITS

LEMMA 1. For fE R, the extreme points ofEif) consist of -1, +1, and
the nk+ I - 1 roots of

(3.1 )

Proof Equation (2.10) and the remarks below (2.11) imply that there
exist nk+l + 1 values nkO/ +¢/ such that A(O/)/B(O;) alternates between-l
and +1 for i = 0,... , nk + l' Thus

but

i = 0,..., nk + I , (3.2)

Substituting (2.11) into this equation and utilizing T/(x) = cos 10, x = cos 0,
yields

sin(nk°+ ¢) = sin 0/ [nka( 1 + t2- 2t cos aO)]

X {aT~k(x)[-2t + (1 + t2) Ta(x)]

+ nkTn/x)(1 - t2) T~(x)}. (3.3)

Since ItI< 1, Eqs. (3.2) and (3.3) imply the conclusion. I

LEMMA 2. For fE R,

[eif)(x)/llejU)II] [1 + t2- 2tTa(x)]

= Tnk(x)[-2t + (1 + t2) Ta(x)]- [(1 -x2)/nka] T~Jx) T~(x)(1- t2),

j=nk,nk+ I,...,nk+1-I. (3.4)

Proof Equations (2.9) and (2.10) imply that

Equation (3.4) is obtained by utilizing (2.11), x = cos 0, T/(x) = cos 10, and
algebraic manipulation. I

Define Qm + I by

Qm+l(X) = Tnk(x)[-2t + (1 + t2) Ta(x)]

- [(I-x2)/n~] T~/x) T~(x)(I-t2), (3.5)
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where m = nk+ I - 1. Equality (2.13) implies that IEm(f)1 = m + 2. From
Lemma 1, -1, +1, and the zeros of (3.1) constitute the elements of Em(f);
label these as

(3.6)

For each k = 0, 1,... , m + 1, define Qm+ IE lIm + I by

where Ym is given by (2.4). Let q;mellm be determined by

(3.7)

k = 0,..., m + 1, k =F i. (3.8)

Since IEm(!)1 = m + 2, (2.3) implies that

Thus initially II qim II, i = 0, ..., m + 1, is estimated.

(3.9)

LEMMA 3. Suppose that Qm+ 1 and qim' i = 0,... , m + 1, are defined by
(3.7) and (3.8), respectively. Let am+1 be the coefficient of x m+1 in Qm+ l'

Then

i = 0,..., m + 1, m = nk+ 1 - 1.

Proof Equations (3.7) and (3.8) imply that

m+l
qim(X) = Qm+l(x)-am+1 n (x-xk )·

k=O
k*;

From Lemma 1,

m+l
w(x)= n (x-x k )

k=O

(X2 - 1) g(x)
a(m - a + 1pm .

Equations (3.11) and (3.12) now imply the conclusion. I

(3.10)

(3.11)

(3.12)
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LEMMA 4. Let g be the polynomial given in (3.1). Then

(a) II gil is ofprecise order (m - a + I )2, and

(b) max_ i <;;x<;; i I(d/dx)[ (x2- I) g(x)] is or precise order (m - a + 1)2.

Proof For part (a), (3.1) implies that

where a is some positive constant not depending on nk • Therefore

Ilgll~anz=a(m-a+ 1)2.

On the other hand, (3.1) yields

II gil ~ Ig(l)/

= anz(t - 1)2 +nk a2(1 - t2)

= (m - a + 1)2{a(t - 1)2 +a2(1 - t2)/nd.

Since It I< I, this inequality establishes that

II gil >p(m -a + If
Thus (a) is proven.

To prove part (b), first let rex) = (x2- I) g(x). Then

r'(x) = 2xg(x) + (x2- I) g'(x). (3.13 )

But from (3.1),

(x2- I) g'(x) = a(x2- I) T~'/x)[-2t+ (I + t2) Ta(x)]

+ a(x2- I) T~k(x)(1 + t2) T~(x)

+ nk(x
2- I) T~/x)(l - t2) T~(x)

+ nk(x2- I) Tnk(x)(1 - t2) T~'(x). (3.14)

Now

and

(I - x2) T~k(X) = ndTnk-i(x) -xTn.(x»).

These last two equalities and (3.14) imply that

max l(x2-I)g'(x)I=O[(m-a+I)2). (3.15)
-i<x<;;i



STRONG UNICITY CONSTANTS 299

Use of (3.13), (3.15), and part (a) implies that

max l(djdx)[(x2 -1)g(x)]I=O[(m-a+1)2]. (3.16)
-1<;;x<;;1

To conclude the proof of part (b) let x = Xi' where xl;Em is any extreme
point of em(f) exceptl or -1. Now (3.3) implies that

nka sin 0(1 + t2- 2t cos aO) sin(nkO + ~) = (1 - x2) g(x). (3.17)

Differentiating (3.17) with respect to x, evaluating at x = Xi' and utilizing
(3.2) yields

ank(l + t2- 2t cos aO;) cos(nkOi +¢J(nk+d¢jdO) Iif> = if>;

= (djdx)[(x2- I) g(x)] Ix=xj' (3.18)

Therefore (2.11), (3.18), and the remarks above (3.2) imply that

anW + t2- 2t cos aO;) +o2nk(1 - t2) = l(djdx)[(x2- 1) g(x»)!x=X(

Thus

[(djdx)[ (x 2
- 1) g(x) llx=x; ~ an~(l - t)2 + a 2nk(1 - t 2

)

= o(m - a + 1)\1 - t 2
) +a2(m - 0 + 1)(1 - t2

). (3.19)

Inequality (3.19) and (3.16) are equivalent to conclusion (b). I

LEMMA 5. Let 0m+ 1 be the coefficient of x m
+ I in Qm+ I' Then

2mj(1 + Itl)2 ~ jOm+11 ~ 2mj(l-ltlf

Proof By (3.7),

(3.20)

(3.21 )
m+1 w(x)

Qm+I(X) = ~ Ym(xi) (x - Xi) w'(x
i
)

where w is defined in (3.12). Since Ym(xk) is alternately ± 1, k = 0,... , m + 1,

m+1
lam+ll= L l/lw'(x;)I·

;=0
(3.22)

Let tlm+1 be the coefficient of x m+1 in the Qm+1 defined in (3.5). Comparing
(3.4) with (3.5) yields

k= O,...,m + 1.
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This equality implies that

Equations (3.22) and (3.23) now imply that

m~n (1 + t
2

- 2tTa(x;)) lam+11 ~ Iam + 11
I

from which it follows that

(3.23)

(1-ltI)2Iam+11~ lam+11 ~ (1 + ItI)2Iam+1 1. (3.24)

But (3.5) implies

This equality and (3.24) now imply (3.20). I

Lemma 1-5 now facilitate the proofs of Theorem 2 and 3 below.

THEOREM 2. LetfE R, where a> 0 and b are non-negative integers. Let
nk = ak + b, k = 0,1,.... Then M nk+

I
- 1(f) is ofprecise order nk + 1 - 1.

Proof According to Definition 1 it is sufficient to show that there are
positive constants a and f3 independent of k and a natural number K such
that

for all k ~ K. Since IEm(!)1 = m + 2, m = nk + 1 - 1, (3.9) is valid. Lemma 3
implies that

i= 0,..., m + 1.

l(x2
- 1) g(x)1

Ix-xii

(3.25)
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max max
O<i<;m+l -l<;x<;l

and consequently (3.11) and (3.25) imply that

21am + 1 1 l(x2 -1) g(x)1

Ix-x;1
(3.26)

Applications of Lemma 4 and Lemma 5 to (3.26) now establish that

Ilq;mll = Oem - a + 1), i = 0,..., m + I. (3.27)

On the other hand, from Lemma 3 and (3.6),

am + 1 g(I)

Therefore

21 g(l)1
Iqm+ 1.m(1)1 ~ a(l + t)2(m _ a + 1) - 1,

but (3. I) implies that

g(l)= a(m - a + 1)2(1 - t)2 + (m -a + 1) a2(1- t2).

This result and (3.28) now establish that

Ilqm+l.mll~.IJ*(m-a+1).

(3.28)

(3.29)

Inequality (3.29), equality (3.27), and (3.9) now imply the conclusion of
Theorem 2. I

THEOREM 3. Let fE R, where a> °and b are non-negative integers.
Then Mn(f) is ofprecise order n.

Proof Theorem 1 states that M m(f) has precise order m, where
m = nk+ I - 1. Because of (2.12),

Also

(3.30)

k= 0,1,.... (3.31 )
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The inequalities in (3.30), equality (3.31), and Theorem 1 imply that

j= 0,..., a-I. (3.32 )

Appealing again to (3.30) and (3.31), and also to (3.32), Theorem 3 will
be established if there exists an a >0 not depending on k and a natural
number K such that

k~K. (3.33)

Theorem 1 insures the existence of a qnk E llnksuch that

(3.34)

In what follows II qnJI is estimated for cases (i) and (iii) of Theorem 1. The
analysis for case (ii) of Theorem 1 parallels that about to be given for case
(i) and hence is omitted. Let x* E I be such that Iqn/x*)1 = II qnJI. Define
A ~Enk(f) by

Case (i). In this case Theorem 1 guarantees that there exist nk + 1
points

YO<Yl<"'<Ynk

contained in A such that x* <Yo and -sgn qnk(X*), Ynk(YO)' Ynk(Yl)"'" Yn/Yn)
alternate in sign. Let

Now (2.12) and (3.31) insure that there are precisely a elements of
Enk(f) - B. Let

For Case (i), zo = -1 E Enk(f) - B. Define p E IInk + I by

p(y/) = qnk(Y/) = Yn/yJ, i = 0,..., nk ,

p(-l) = -sgn qnk(X*).
(3.35)

Thus p has nk + 2 sign changes. If bnk+ 1 is the coefficient of x nk+ 1 in p, then
the argument given in [7] implies that

(3.36)
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Also,

nk
qnk(X) = p(X) - bnk+ I TI (x - Yj).

j=o

Therefore from (3.35)

nk
qnk(-I) = p(-I) - bnk + I n (-1 - Yj)

j=O

Thus

Applying (3.12) and (3.36) to (3.37) results in

Since OJ:i 11 +zjl ~ 2a
-

l
, it follows that

Equation (3.1) now implies that

Iqnk(-I)1 ~ nk(1 - t)2 + a(1- t2) - 1.

This inequality and (3.34) imply for Case (i) that (3.33) is satisfied.

303

(3.37)

Case (iii). Verifying (3.33) for this case is slightly more complex. Let
B={Yo'...'Yi-!'Yi,...,YnJ~A be the extreme points guaranteed by
Theorem 1, where now Yi-I <x* <Yi' for some i= 1,...,nk • Since
Ynk(Yi-l) = Ynk(Y;) and En/I) = Em(f), there exists a v E Enk(f) such that
Y;-l < v <Yi and Ynk(V) = -Ynk(Y;). For Case (iii), define p E lInk + 1 by

p(yJ = qn.(Y;) = Yn.(Y;), i = 0,... , nk ,

p(V) = Yn.(V).

640/32/4-4
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Again p has n + 2 sign changes and hence (3.36) is valid for this p. Now
Theorem 1 and the definition of p imply that

nk
qnJx) = p(x) - bnk+ I n (x - Yj)'

i~O

(3.38)

As in Case (i), if B= {Yo, ...,Yn)' then Bc:;AC:;Enk = {xo, ... ,Xnk +
1
}, and

EnJf) - B contains precisely a elements {zo,"" za-ll. Therefore (3.38) may
be expressed as

Again by utilizing (3.12) this expression can be written as

(3.39)

Evaluating (3.39) at x = v and using (3.36) yields

I ( )1
l(djdx)[«X2 - I) g(x»j(x - v)]lx~l'

qnk V ~ a 1 n a 1 1 I - 1.ank2 i~O. Zj'Fl' V - Zi

Since for Case (iii), v * ±I, (3.19), and the observation that
nj:d.zj'Fvlx-zil~2a-l imply that

1
( )I

"nk(l-t)2+a(1-t2)_1
qnk V 7 . 22a 2 .

Hence (3.33) is valid for Case (iii) also, concluding the proof of Theorem 3.
Theorem 3 provides for the precise order of Mn(f) for every IE It Other

efforts [5, 7 J to establish the precise order of Mn(f) for specific functions I
have relied on IEn(f)1 = n + 2 for every n. Theorem I allows this restriction
to be circumvented for rational functions in R.

For certain non-rational functions (1.4) provides bounds for Mn(f), but
precise orders for these functions have yet to be displayed.

The authors believe that the precise order concept merits further study,
particularly in light of the relationships between strong unicity and Lebesgue
constants [7,8].
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